Skip to main content
Passa alla visualizzazione normale.

ANTONELLA NASTASI

Curriculum and Research

NASTASI ANTONELLA

ANTONELLA NASTASI

 (MATH-03/A)

Ingegneria

Contacts

+3909123891033

antonella.nastasi@unipa.it

Curriculum not available

Subjects

Academic Year Subject identification code Subject name ECTS Course of study
2024/2025 19109 ANALISI MATEMATICA C.I. 12 INGEGNERIA ELETTRONICA
2024/2025 19109 ANALISI MATEMATICA C.I. 12 INGEGNERIA ELETTRICA PER LA E-MOBILITY
2024/2025 20564 MODULO ANALISI MATEMATICA 1 (MODULO) 6 INGEGNERIA ELETTRONICA
2024/2025 20564 MODULO ANALISI MATEMATICA 1 (MODULO) 6 INGEGNERIA ELETTRICA PER LA E-MOBILITY
2024/2025 20565 MODULO ANALISI MATEMATICA 2 (MODULO) 6 INGEGNERIA ELETTRICA PER LA E-MOBILITY
2024/2025 20565 MODULO ANALISI MATEMATICA 2 (MODULO) 6 INGEGNERIA ELETTRONICA

Publications

Date Title Type Record
2024 Gradient higher integrability for double phase problems on metric measure spaces Articolo in rivista Go to
2024 Regularity results for quasiminima of a class of double phase problems Articolo in rivista Go to
2024 Unified a-priori estimates for minimizers under p,q-growth and exponential growth Altro Go to
2023 Higher integrability and stability of (p,q)-quasiminimizers Articolo in rivista Go to
2022 Neumann p-Laplacian problems with a reaction term on metric spaces Articolo in rivista Go to
2021 Regularity properties for quasiminimizers of a (p, q)-Dirichlet integral Articolo in rivista Go to
2021 Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition Articolo in rivista Go to
2021 On (p(x), q(x))-Laplace equations in R^N without Ambrosetti-Rabinowitz condition Articolo in rivista Go to
2020 Weak Solutions for a (p(z), q(z))-Laplacian Dirichlet Problem Articolo in rivista Go to
2019 A note on homoclinic solutions of (p,q)-Laplacian difference equations Articolo in rivista Go to
2019 Weak solution for Neumann (p,q)-Laplacian problem on Riemannian manifold Articolo in rivista Go to