Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in southern Sicily
- Authors: CONOSCENTI, C; DI MAGGIO, C; ROTIGLIANO, E
- Publication year: 2008
- Type: Articolo in rivista (Articolo in rivista)
- Key words: Water erosion, GIS, Multivariate statistical analysis, Validation, Naro river basin, Southern Italy, Sicily
- OA Link: http://hdl.handle.net/10447/35727
Abstract
A certain number of studies have been carried out in recent years that aim at developing and applying a model capable of assessing water erosion of soil. Some of these have tried to quantitatively evaluate the volumes of soil loss, while others have focused their efforts on the recognition of the areas most prone to water erosion processes. This article presents the results of a research whose objective was that of evaluating water erosion susceptibility in a Sicilian watershed: the Naro river basin. A geomorphological study was carried out to recognize the water erosion landforms and define a set of parameters expressing both the intensity of hydraulic forces and the resistance of rocks/soils. The landforms were mapped and classified according to the dominant process in landsurfaces affected by diffuse or linear water erosion. A GIS layer was obtained by combining six determining factors (bedrock lithology, land use, soil texture, plan curvature, stream power index and slope-length factor) in unique conditions units. A geostatistical multivariate approach was applied by analysing the relationships between the spatial distributions of the erosion landforms and the unique condition units. Particularly, the density of eroded area for each combination of determining factors has been calculated: such function corresponds, in fact, to the conditional probability of erosion landforms to develop, under the same geoenvironmental conditions. In light of the obtained results, a general geomorphologic model for water erosion in the Naro river basin can be depicted: cultivated areas in clayey slopes, having fine-medium soil texture, are the most prone to be eroded; linear or diffuse water erosion processes dominate where the topography is favourable to a convergent or divergent runoff, respectively. For each of the two erosion process types, a susceptibility map was produced and submitted to a validation procedure based on a spatial random partition strategy. Both the success of the validation procedure of the susceptibility models and the geomorphological coherence of the relationships between factors and process that such models suggest, confirm the reliability of the method and the goodness of the predictions.