Anisotropic elliptic equations with gradient-dependent lower order terms and L^1 data
- Autori: barbara Brandolini; Florica Corina Cirstea
- Anno di pubblicazione: 2023
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/589691
Abstract
We prove the existence of a weak solution for a general class of Dirichlet anisotropic elliptic problems such as $\mathcal Au+\Phi(x,u,\nabla u)=\mathfrak{B}u+f$ in $\Omega$, where $\Omega$ is a bounded open subset of $\mathbb R^N$ and $f\in L^1(\Omega)$ is arbitrary. The principal part is a divergence-form nonlinear anisotropic operator $\mathcal A$, the prototype of which is $\mathcal A u=-\sum_{j=1}^N \partial_j(|\partial_j u|^{p_j-2}\partial_j u)$ with $p_j>1$ for all $1\leq j\leq N$ and $\sum_{j=1}^N (1/p_j)>1$. As a novelty in this paper, our lower order terms involve a new class of operators $\mathfrak B$ such that $\mathcal{A}-\mathfrak{B}$ is bounded, coercive and pseudo-monotone from $W_0^{1,\overrightarrow{p}}(\Omega)$ into its dual, as well as a gradient-dependent nonlinearity $\Phi$ with an ``anisotropic natural growth" in the gradient and a good sign condition.