An optimal Poincaré-Wirtinger inequality in gauss space
- Autori: Brandolini B.; Chiacchio F.; Henrot A.; Trombetti C.
- Anno di pubblicazione: 2013
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/494009
Abstract
Abstract. Let Ω be a smooth, convex, unbounded domain of R N. Denote by μ1(Ω) the first nontrivial Neumann eigenvalue of the Hermite operator in Ω; we prove that μ1(Ω) ≥ 1. The result is sharp since equality sign is achieved when Ω is a N-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space H1(Ω, dγN), where γN is the N-dimensional Gaussian measure. © International Press 2013.