

INTRODUZIONE - Campi di applicabilità degli impianti a membrane - La filtrazione - Dispositivi di filtrazione IL PROCESSO DI FILTRAZIONE NEGLI MBR - Configurazioni impiantistiche LA PROGETTAZIONE DELL'UNITA DI FILTRAZIONE - Calcolo della superficie di filtrazione e configurazione sezione - Macchine accessorie e dotazioni strumentali

International Seminar - University of Palermo 20 May 2016

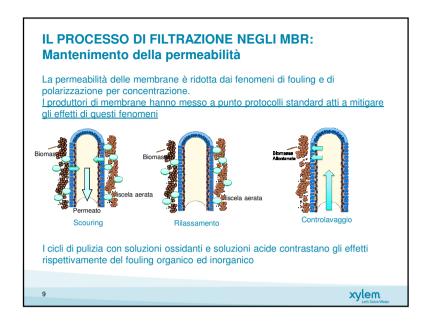
INTRODUZIONE: Le filtrazione su membrana: perché? La distinzione fra filtrazione di superficie e di profondità è solo formale; nella realtà i due processi avvengono contestualmente. Le membrane sono filtri di superficie ma manifestano anche una certa ritenzione di profondità: le particelle con dimensioni inferiori a quelle dei pori o le sostanze disciolte possono essere trattenute all'interno del mezzo filtrante La filtrazione convenzionale (ortogonale) produce depositi (cake) che contrastano il passaggio del fluido (aumento gradiente di pressione). Il materiale di cui è costituita la membrana tende ad adsorbire le sostanze disciolte presente in soluzione. Questi fenomeni devono essere contrastati xylem

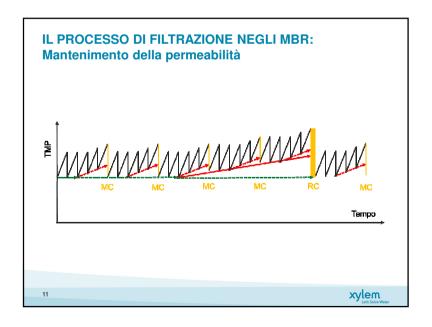
INTRODUZIONE: Glossario

Flusso

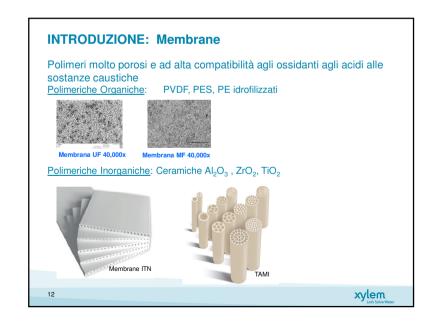
- Portata specifica attraverso le membrane
- · Portata in volume / area membrane
- Unità: L/m²h (lmh)

TMP (Trans membrane pressure)


- Pressione differenziale tra lato acqua grezza e lato permeato della membrana
- Per le membrane sommerse bisogna considerare anche la pressione statica sul lato acqua grezza e pressione di aspirazione sul lato permeato

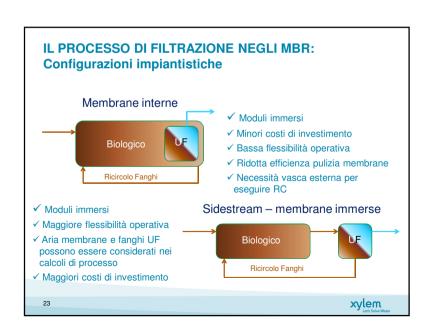

Permeabilità

- Flusso / TMP;
- Unità L/(m²*h*bar)
- Descrive le prestazioni delle membrane


xylem

International Seminar - University of Palermo 20 May 2016

xylem

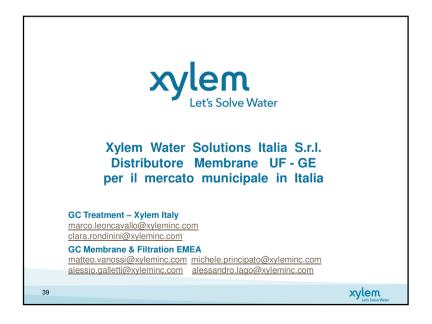


Fibre Cave	Membrane Piane	Tubolari ✓Flussi di permeazione elevat (>40LMH) ✓Possibilità di operare con elevati valori di MLSS ✓Consumi energetici di alcune volte superiori a membrane immerse (cross flow) ✓Membrane Esterne	
✓ Bassi consumi energetici ✓ Elevata densità di impaccamento ✓ Controllo perdita permeabilità efficace. ✓ Tempo di vita attesi elevati	✓ Minore consumo di reagenti ✓ Minore TMP ✓ Maggiore semplicità impiantistica ✓ Bassa densità di impaccamento (elevata occupazione dello spazio) ✓ Non controlavabili o controlavabili a basse TMP ✓ Portate aria per scouring elevate (elevati consumi energetici)		

Temperatura ℃	FLUSSO (netto o istantaneo) I/m ^{2*} h @ MLSS _{membrane} 12 g/I					
	ADF	MMF	MWF	PDF	PHF	
12	16	18	20	22	25	
20	20	24	28	32	40	
alori di fantasia. ella realtà questi dati .a superficie gravosa			-			



International Seminar - University of Palermo 20 May 2016



TECNICHE DI LAVAGGIO Lavaggi di manutenzione MC Estende gli intervalli tra i lavaggi di recupero 200 mg/L NaOCI 2000 mg/L Acido citrico 1/settimana, durata: ~60 minuti Lavaggi di recupero RC Ripristino della permeabilità ad un valore base 1100 mg/L NaOCI 2200 mg/L Acido Citrico 1/anno, 18-24 ore di durata per prodotto chimico

