Skip to main content
Passa alla visualizzazione normale.

MARCO VATTANO

New insights on secondary minerals from italian sulfuric acid caves

  • Authors: D’angeli, Ilenia M.*; Carbone, Cristina; Nagostinis, Maria; Parise, Mario; Vattano, Marco; Madonia, Giuliana; Waele, Jo De
  • Publication year: 2018
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/331515

Abstract

Sulfuric acid minerals are important clues to identify the speleogenetic phases of hypogene caves. Italy hosts ~25% of the known worldwide sulfuric acid speleogenetic (SAS) systems, including the famous well-studied Frasassi, Monte Cucco, and Acquasanta Terme caves. Nevertheless, other underground environments have been analyzed, and interesting mineralogical assemblages were found associated with peculiar geomorphological features such as cupolas, replacement pockets, feeders, sulfuric notches, and sub-horizontal levels. In this paper, we focused on 15 cave systems located along the Apennine Chain, in Apulia, in Sicily, and in Sardinia, where copious SAS minerals were observed. Some of the studied systems (e.g., Porretta Terme, Capo Palinuro, Cassano allo Ionio, Cerchiara di Calabria, Santa Cesarea Terme) are still active, and mainly used as spas for human treatments. The most interesting and diversified mineralogical associations have been documented in Monte Cucco (Umbria) and Cavallone-Bove (Abruzzo) caves, in which the common gypsum is associated with alunite-jarosite minerals, but also with baryte, celestine, fluorite, and authigenic rutile-ilmenite-titanite. In addition, the core of alunite and jarosite, from these two systems, results enriched in PO43-, clearly suggesting hypogene hydrothermal origin. Santa Cesarea Terme, Capo Palinuro, and Acqua Mintina caves show important native sulfur deposits, which abundantly cover walls, ceilings, and speleothems. Abundant copiapite, pickeringite, tamarugite, hexahydrate assemblages have been observed in the Calabrian systems; their association with pyrite and hematite would suggest they formed in very acidic conditions with pH ranging between 0 and 4.