Emission standards versus immission standards for assessing the impact of urban drainage on ephemeral receiving water bodies
- Autori: Freni, G; Mannina, G; Viviani, G
- Anno di pubblicazione: 2010
- Tipologia: Articolo in rivista (Articolo in rivista)
- Parole Chiave: urban drainage integrated modelling, Water Framework Directive, water quality management, water quality monitoring
- OA Link: http://hdl.handle.net/10447/49577
Abstract
In the past, emission standard indicators have been adopted by environmental regulation authorities in order to preserve the quality of a receiving water body. Such indicators are based on the frequency or magnitude of a polluted discharge that may be continuous or intermittent. In order to properly maintain the quality of receiving waters, the Water Framework Directive, following the basic ideas of British Urban Pollution Manual, has been established. The Directive has overtaken the emission-standard concept, substituting it with the stream-standard concept that fixes discharge limits for each polluting substance depending on the self-depurative characteristics of receiving waters. Stream-standard assessment requires the deployment of measurement campaigns that can be very expensive; furthermore, the measurement campaigns are usually not able to provide a link between the receiving water quality and the polluting sources. Therefore, it would be very useful to find a correlation between the quality status of the natural waters and the emission-based indicators. Thus, this study is aimed to finding a possible connection between the receiving water quality indicators drawn by environmental regulation authorities and emission-based indicators while considering both continuous (i.e. from the wastewater treatment plants) and intermittent pollution discharges (mainly from combined sewer overflows). Such research has been carried out by means of long-term analysis adopting a holistic modelling approach. The different parts of the integrated urban drainage system were modelled by a parsimonious integrated model. The analysis was applied to an ephemeral river bounding Bologna (Italy). The study concluded that the correlation between receiving water quality and polluting emissions cannot be generally stated. Nevertheless, specific analyses on polluting emissions were pointed out in the study highlighting cause—effect link between polluting sources and receiving water quality.