Smoothed Particle ElectroMagnetics: a mesh-free solver for transients
- Authors: Ala, G.; Francomano, E.; Tortorici, A.; Toscano, E.; Viola, F.
- Publication year: 2006
- Type: Articolo in rivista (Articolo in rivista)
- Key words: Electromagnetic transients; Maxwell's equations; Mesh-free particle method; Smoothed particle hydrodynamics
- OA Link: http://hdl.handle.net/10447/15131
Abstract
In this paper an advanced mesh-free particle method for electromagnetic transient analysis, is presented. The aim is to obtain efficient simulations by avoiding the use of a mesh such as in the most popular grid-based numerical methods. The basic idea is to obtain numerical solutions for partial differential equations describing the electromagnetic problem by using a set of particles arbitrarily placed in the problem domain. The mesh-free smoothed particle hydrodynamics method has been adopted to obtain numerical solution of time domain Maxwell’s curl equations. An explicit finite difference scheme has been employed for time integration. Details about the numerical treatment of electromagnetic vector fields components are discussed. Two case studies in one and in two dimensions are reported. In order to validate the new proposed methodology, named as Smoothed Particle ElectroMagnetics, a comparison with the standard finite difference time domain method results is performed. The intrinsic adaptive capability of the proposed method, has been exploited by introducing irregular particles distribution.