Location of solutions for quasi-linear elliptic equations with general gradient dependence
- Autori: Motreanu, D.; Tornatore, E.
- Anno di pubblicazione: 2017
- Tipologia: Articolo in rivista (Articolo in rivista)
- Parole Chiave: (p, q)-laplacian; Gradient dependence; positive solution; Quasi-linear elliptic equations; subsolution-supersolution; Applied Mathematics
- OA Link: http://hdl.handle.net/10447/253867
Abstract
Existence and location of solutions to a Dirichlet problem driven by (p, q)-Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.