Skip to main content
Passa alla visualizzazione normale.

CAMILLO TRAPANI

Operators in Rigged Hilbert spaces: some spectral properties

Abstract

A notion of resolvent set for an operator acting in a rigged Hilbert space $\D \subset \H\subset \D^\times$ is proposed. This set depends on a family of intermediate locally convex spaces living between $\D$ and $\D^\times$, called interspaces. Some properties of the resolvent set and of the corresponding multivalued resolvent function are derived and some examples are discussed.