Exploring Universal Attribute Characterization of Spoken Languages for Spoken Language Recognition
- Authors: S. M. SINISCALCHI; J. REED; T. SVENDSEN; AND C.-H. LEE
- Publication year: 2009
- Type: Contributo in atti di convegno pubblicato in volume
- OA Link: http://hdl.handle.net/10447/663739
Abstract
We propose a novel universal acoustic characterization approach to spoken language identification (LID), in which any spoken language is described with a common set of fundamental units defined “universally.” Specifically, manner and place of articulation form this unit inventory and are used to build a set of universal attribute models with data-driven techniques. Using the vector space modeling approaches to LID a spoken utterance is first decoded into a sequence of attributes. Then, a feature vector consisting of co-occurrence statistics of attribute units is created, and the final LID decision is implemented with a set of vector space language classifiers. Although the present study is just in its preliminary stage, promising results comparable to acoustically rich phone-based LID systems have already been obtained on the NIST 2003 LID task. The results provide clear insight for further performance improvements and encourage a continuing exploration of the proposed framework.