Quasi conjunction and inclusion relation in probabilistic default reasoning
- Autori: Gilio, A; Sanfilippo, G
- Anno di pubblicazione: 2011
- Tipologia: Capitolo o Saggio (Capitolo o saggio)
- OA Link: http://hdl.handle.net/10447/54946
Abstract
We study the quasi conjunction and the Goodman & Nguyen inclusion relation for conditional events, in the setting of probabilistic default reasoning under coherence. We deepen two recent results given in (Gilio and Sanfilippo, 2010): the first result concerns p-entailment from a family F of conditional events to the quasi conjunction C(S) associated with each nonempty subset S of F; the second result, among other aspects, analyzes the equivalence between p-entailment from F and p-entailment from C(S), where S is some nonempty subset of F. We also characterize p-entailment by some alternative theorems. Finally, we deepen the connections between p-entailment and the Goodman & Nguyen inclusion relation; in particular, for a pair (F,E|H), we study the class K of the subsets S of F such that C(S) is included in E|H. We show that K is additive and has a greatest element which can be determined by applying a suitable algorithm.