Hyaluronan-coated polybenzofulvene brushes as biomimetic materials
- Authors: Cappelli, A.; Paolino, M.; Grisci, G.; Razzano, V.; Giuliani, G.; Donati, A.; Bonechi, C.; Mendichi, R.; Battiato, S.; Samperi, F.; Scialabba, C.; Giammona, G.; Makovec, F.; Licciardi, M.
- Publication year: 2016
- Type: Articolo in rivista (Articolo in rivista)
- OA Link: http://hdl.handle.net/10447/225504
Abstract
Hyaluronic acid (HA) forms pericellular coats in many cell types that are involved in the early stages of cell adhesion by interacting with the CD44 receptor. Based on the largely recognized overexpression of the CD44 receptor in tumor tissues, a polybenzofulvene molecular brush has been enveloped into hyaluronan shells to obtain a tri-component polymer brush (TCPB) composed of intrinsically fluorescent backbones bearing nona(ethylene glycol) arms terminated with low molecular weight HA macromolecules. The nanoaggregates obtained in TCPB water dispersions were characterized on the basis of dimensions, zeta potential, and in vitro cell toxicity. This biomimetic multifunctional material bearing HA on the surface of its cylindrical brush architecture showed promising prerequisites for the preparation of nanostructured drug delivery systems.