Resonant Activation and Noise Enhanced Stability in Josephson junctions
- Authors: PANKRATOV AL; SPAGNOLO B
- Publication year: 2005
- Type: Proceedings
- OA Link: http://hdl.handle.net/10447/32385
Abstract
We investigate the interplay of two noise-induced effects on the temporal characteristics of short overdamped Josephson junctions in the presence of a periodic driving. We find that: (i) the mean life time of superconductive state has a minimum as a function of driving frequency, and near the minimum it actually does not depend on the noise intensity (resonant activation phenomenon); (ii) the noise enhanced stability phenomenon increases the switching time from superconductive to the resistive state. As a consequence there is a suitable frequency range of clock pulses, at which the noise has a minimal effect on pulse propagation in RSFQ electronic devices.