Salta al contenuto principale
Passa alla visualizzazione normale.

ANGELO SPINELLO

Exploiting Cryo-EM Structural Information and All-Atom Simulations to Decrypt the Molecular Mechanism of Splicing Modulators

  • Autori: Borisek J.; Saltalamacchia A.; Spinello A.; Magistrato A.
  • Anno di pubblicazione: 2019
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/535325

Abstract

Splicing modulators (SMs) pladienolides, herboxidienes, and spliceostatins exert their antitumor activity by altering the ability of SF3B1 and PHF5A proteins, components of SF3b splicing factor, to recognize distinct intron branching point sequences, thus finely calibrating constitutive/alternative/aberrant splicing of pre-mRNA. Here, by exploiting structural information obtained from cryo-EM data, and by performing multiple μs-long all-atom simulations of SF3b in apo form and in complex with selected SMs, we disclose how these latter seep into the narrow slit at the SF3B1/PHF5A protein interface. This locks the intrinsic open/closed conformational transitions of SFB1's solenoidal structure into the open state. As a result, SMs prevent the formation of a closed/intron-loaded conformation of the SF3B1 protein by decreasing the internal SF3B1 cross-correlation and reducing SF3B1's functional plasticity. We further compellingly support the proposition that SMs' action exceeds a purely competitive inhibition. Indeed, our simulations also demonstrate that the introduction of recurrent drug resistance/sensitizing mutations in SF3B1 or PHF5A, besides affecting the binding affinity of SMs, likewise influence the functional dynamics of SF3B1. This knowledge clarifies the molecular terms of SF3b modulation by small-molecules, fostering the rational-based discovery of drugs tackling distinct cancer types resulting from dysregulated splicing. This work also supports the coming of age usage of cryo-EM structural data in forthcoming drug-discovery studies.