Skip to main content
Passa alla visualizzazione normale.

SERENA RANDAZZO

Experimental investigation and modeling of diffusion dialysis for HCl recovery from waste pickling solution

  • Authors: R. Gueccia, S. Randazzo, D. Chillura Martino, A. Cipollina, G. Micale
  • Publication year: 2019
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/337950

Abstract

Hydrochloric acid recovery from pickling solutions was studied by employing a batch diffusion dialysis (DD) laboratory test-rig equipped with Fumasep membranes. The effect of main operating parameters such as HCl concentration (0.1–3 M) and the presence of Fe2+ (up to 150 g/l) was investigated to simulate the system operation with real industrial streams. The variation of HCl, Fe2+ and water flux was identified. When only HCl is present, a recovery efficiency of 100% was reached. In the presence of FeCl2, higher acid recovery efficiencies, up to 150%, were observed due to the so-called “salt effect”, which promotes the passage of acid even against its concentration gradient. A 7% leakage of FeCl2 was detected in the most severe conditions. An original analysis on water flux in DD operation has indicated that osmotic flux prevails at low HCl concentrations, while a dominant “drag flux” in the opposite direction is observed for higher HCl concentrations. A comprehensive mathematical model was developed and validated with experimental data. The model has a time and space distributed-parameters structure allowing to effectively simulate steady-state and transient batch operations, thus providing an operative tool for the design and optimisation of DD units.