Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD
- Autori: Di Mauro, Stefania; Salomone, Federico; Scamporrino, Alessandra; Filippello, Agnese; Morisco, Filomena; Guido, Maria; Lembo, Vincenzo; Cossiga, Valentina; Pipitone, Rosaria; Grimaudo, Stefania; Malaguarnera, Roberta; Purrello, Francesco; Piro, Salvatore
- Anno di pubblicazione: 2021
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/544349
Abstract
Background and aim: Coffee intake exerts protective effects against non-alcoholic fatty liver disease (NAFLD), although without fully cleared mechanisms. In this study we aimed to assess whether coffee consumption may influence the expression of long non-coding RNAs (lncRNAs) in the liver. Methods: C57BL/6J mice were fed a 12-week standard diet (SD), high-fat diet (HFD) or HFD plus decaffeinated coffee solution (HFD + coffee). Expression of specific lncRNAs involved in NAFLD was analyzed by real-time PCR. For the most differentially expressed lncRNAs, the analysis was also extended to their mRNA targets. Results: Decaffeinated coffee intake reduced body weight gain, prevented NAFLD, lowered hyperglycemia and hypercholesterolemia. NAFLD was associated with lower hepatic expression of Gm16551, a lncRNA inhibiting de novo lipogenesis, and higher expression of H19, a lncRNA promoting fibrogenesis. Coffee intake restored Gm16551 to levels observed in lean mice and downregulated gene expression of its targets acetyl coenzyme A carboxylase 1 and stearoyl coenzyme A desaturase 1. Furthermore, coffee consumption markedly decreased hepatic expression of H19 and of its target gene collagen alpha-1(I) chain; consistently, in mice fed HFD + coffee liver expression of αSMA protein returned to levels of mice fed SD. Expression of lncRNA involved in circadian clock such as fatty liver-related lncRNA 1 (FLRL1) and fatty liver-related lncRNA 2 (FLRL2) were upregulated by HFD and were also modulated by coffee intake. Conclusion: Hepatoprotective effects of coffee may be depending on the modulation of lncRNAs involved in key pathways of NAFLD onset and progression.