The entropic cost of quantum generalized measurements
- Autori: Mancino L.; Sbroscia M.; Roccia E.; Gianani I.; Somma F.; Mataloni P.; Paternostro M.; Barbieri M.
- Anno di pubblicazione: 2018
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/631253
Abstract
Landauer’s principle introduces a symmetry between computational and physical processes: erasure of information, a logically irreversible operation, must be underlain by an irreversible transformation dissipating energy. Monitoring micro- and nano-systems needs to enter into the energetic balance of their control; hence, finding the ultimate limits is instrumental to the development of future thermal machines operating at the quantum level. We report on the experimental investigation of a lower bound to the irreversible entropy associated to generalized quantum measurements on a quantum bit. We adopted a quantum photonics gate to implement a device interpolating from the weakly disturbing to the fully invasive and maximally informative regime. Our experiment prompted us to introduce a bound taking into account both the classical result of the measurement and the outcoming quantum state; unlike previous investigation, our entropic bound is based uniquely on measurable quantities. Our results highlight what insights the information-theoretic approach provides on building blocks of quantum information processors.