Experimental and DFT studies on competitive heterocyclic rearrangements. part 2: A one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles
- Autori: PACE, A; PIBIRI, I; PALUMBO PICCIONELLO, A; BUSCEMI, S; VIVONA, N; BARONE, G
- Anno di pubblicazione: 2007
- Tipologia: Articolo in rivista (Articolo in rivista)
- OA Link: http://hdl.handle.net/10447/15362
Abstract
The experimental investigation of the base-catalyzed rearrangements of 3-acylamino-1,2,4-oxadiazoles evidenced a new reaction pathway which competes with the well-known ring-degenerate Boulton- Katritzky rearrangement (BKR). The new reaction consists of a one-atom side-chain rearrangement that is base-activated, occurs at a higher temperature than the BKR, and irreversibly leads to the corresponding 2-acylamino-1,3,4-oxadiazoles. An extensive DFT study is reported to elucidate the proposed reaction mechanism and to compare the three possible inherent routes: (i) the reversible three-atom side-chain ring-degenerate BKR, (ii) the ring contraction-ring expansion route (RCRE), and (iii) the one-atom side-chain rearrangement. The results of the computational investigation point out that the latter route is kinetically preferred over the RCRE and can be considered as the ground-state analogue of a previously proposed C(3)-N(2) migration-nucleophilic attack-cyclization (MNAC) photochemically activated pathway. The MNAC consists of the formation of a diazirine intermediate, involving the exocyclic nitrogen, that eventually evolves into a carbodiimide intermediate (migration); the latter undergoes a single intramolecular nucleophilic attack-cyclization step leading to the final 2-acylamino-1,3,4-oxadiazole.