Skip to main content
Passa alla visualizzazione normale.

GIUSEPPE PIZZOLANTI

Resistin, visfatin, leptin and omentin are differently related to hormonal and metabolic parameters in growth hormone-deficient children

  • Authors: Ciresi, A.; Pizzolanti, G.; Leotta, M.; Guarnotta, V.; Teresi, G.; Giordano, C.
  • Publication year: 2016
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/184752

Abstract

PURPOSE: The effect of growth hormone (GH) on adipose tissue and the role of adipokines in modulating metabolism are documented, but with discordant data. Our aim was to evaluate the impact of GH treatment on a series of selected adipokines known to have a metabolic role and poorly investigated in this setting. METHODS: This is a prospective study. Thirty-one prepubertal children (25 M, 6 F; aged 8.5 ± 1.6 years) with isolated GH deficiency treated with GH for at least 12 months and 30 matched controls were evaluated. Auxological and metabolic parameters, insulin sensitivity indexes, leptin, soluble leptin receptor, adiponectin, visfatin, resistin, omentin, adipocyte fatty acid-binding protein and retinol-binding protein-4 were evaluated before and after 12 months of treatment. RESULTS: At baseline, no significant difference in metabolic parameters was found between GHD children and controls, except for higher LDL cholesterol (p = 0.004) in the first group. At multivariate analysis, LDL cholesterol was independently associated with resistin (B 0.531; p = 0.002), while IGF-I was the only variable independently associated with visfatin (B 0.688; p < 0.001). After 12 months, a significant increase in fasting insulin (p = 0.008), Homa-IR (p = 0.007) and visfatin (p < 0.001) was found, with a concomitant decrease in LDL cholesterol (p = 0.015), QUICKI (p = 0.001), ISI Matsuda (p = 0.006), leptin (p = 0.015) and omentin (p = 0.003)]. At multivariate analysis, BMI was the only variable independently associated with leptin (B 0.485; p = 0.040). CONCLUSIONS: GH treatment modifies adipokine secretion and the perturbation of some adipokine levels could contribute to the clinical and metabolic changes observed during the follow-up.