Skip to main content
Passa alla visualizzazione normale.

GIUSEPPE PITARRESI

Defect detection in additively manufactured titanium prosthesis by flying laser scanning thermography

Abstract

Metal additive manufacturing is nowadays a well-established technology for cutting edge applications in the automotive, aerospace, defense and medical sectors. Since additive metal deposition is basically a welding method, which creates parts by successively adding layers of material, there is a chance for defects like pores, cracks, inclusions and lack of fusion to develop. As a matter of fact, interlayer and intralayer defects are often observed in additive manufactured components. However, if one considers the typical end applications along with the high costs involved in metal additive manufactured components, a "zero defect" target is close to mandatory for this technology. Planning an inclusion of the integrity assessment right into the additive manufacturing process would allow for quick corrective actions to be performed before the component is completed. Some effort has been spent in the quest of an efficient in-process flaw inspection, however, no conventional nondestructive testing (NDT) approach has been fully satisfying yet. This work suggests an experimental evaluation of the effectiveness of flying laser scanning thermography, when detecting flaws on an Additively Manufactured acetabular cup prosthesis made in titanium alloy, where some defects have been artificially created. The rough surface scanned is what's typically left by the additive manufacturing process, and has been left so in order to prove the efficacy of the NDT inspection in real conditions. Potential benefits and limitations of the technique are discussed.