Skip to main content
Passa alla visualizzazione normale.

GIOVANNI PILATO

Multi-class Text Complexity Evaluation via Deep Neural Networks

  • Authors: Cuzzocrea, Alfredo; Lo Bosco, Giosué; Pilato, Giovanni; Schicchi, Daniele
  • Publication year: 2019
  • Type: Contributo in atti di convegno pubblicato in volume
  • OA Link: http://hdl.handle.net/10447/382748

Abstract

Automatic Text Complexity Evaluation (ATE) is a natural language processing task which aims to assess texts difficulty taking into account many facets related to complexity. A large number of papers tackle the problem of ATE by means of machine learning algorithms in order to classify texts into complex or simple classes. In this paper, we try to go beyond the methodologies presented so far by introducing a preliminary system based on a deep neural network model whose objective is to classify sentences into more of two classes. Experiments have been carried out on a manually annotated corpus which has been preprocessed in order to make it suitable for the scope of the paper. The results show that a higher detail level of the classification makes the ATE problem much harder to resolve, showing the weaknesses of the model to accomplish the task correctly.