The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes
- Authors: Colazza, S; Lo Bue, M; Lo Giudice, D; Peri, E
- Publication year: 2009
- Type: Articolo in rivista (Articolo in rivista)
- Key words: Insects,Egg parasitoids,Southern green stink bug, Vicia faba, Scanning electron microscopy
- OA Link: http://hdl.handle.net/10447/41056
Abstract
Chemical footprints left behind by true bugs are perceived as contact kairomones by scelionid egg parasitoids. Female wasps encountering a contaminated artificial substrate display a characteristic arrestment posture, holding the body motionless and antennating the surface. In the system Nezara viridula (L.) and its egg parasitoid Trissolcus basalis (Wollaston), previous studies have shown that the kairomone mediating such behavior is part of N. viridula’s cuticular hydrocarbons (CHC) and furthermore that the wasp’s ability to discriminate host male and female footprints is mainly based on the presence/absence of nonadecane (nC19). In this study, the effect of epicuticular waxes of leaves of broad bean, Vicia faba, on wasp responses to footprints of N. viridula females were investigated. Approximately 20% of T. basalis females displayed an arrestment posture when released on the adaxial leaf surfaces of broad bean plants with intact wax layer and without host chemical contamination; whereas ∼70% of wasps displayed the arrestment posture when intact leaves were contaminated by host female footprints. Adaxial leaf surfaces of broad bean plants dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females induced arrestment responses in about 10% of female wasps; the same percentage of arrestment (10%) was observed when the wasps were released on leaves contaminated by host females and subsequently dewaxed. The side of the polymer film that was appressed to the leaf surface, peeled from the contaminated leaves, induced an arrestment posture in about 95% of observed wasps. Scanning electron microscopy (SEM) revealed that the epicuticular waxes occurred as a film densely crystallized as irregularly shaped platelets with spherical granules randomly distributed. These findings demonstrated that epicuticular waxes of broad bean leaves can mediate the foraging behavior of T. basalis females by absorbing contact kairomones of the host.