Skip to main content
Passa alla visualizzazione normale.

JOAO PEDRO NOGUEIRA LAGES

CO2 Flushing Triggers Paroxysmal Eruptions at Open Conduit Basaltic Volcanoes

  • Authors: Caricchi L.; Montagna C.P.; Aiuppa A.; Nogueira Lages J.; Tamburello G.; Papale P.
  • Publication year: 2024
  • Type: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/637674

Abstract

Open conduit volcanoes erupt with the highest frequency on Earth. Their activity is characterized by an outgassing flux that largely exceeds the gas that could be released by the erupted magma; and by frequent small explosions intercalated by larger events that pose a significant risk to locals, tourists, and scientists. Thus, identifying the signs of an impending larger explosion is of utmost importance for the mitigation of volcanic hazard. Larger explosive events have been associated with the sudden ascent of volatile rich magmas, however, where and why magma accumulates within the plumbing system remains unclear. Here we show that the interaction between CO2-rich fluids and magma spontaneously leads to the accumulation of volatile-rich, low density and gravitationally unstable magma at depth, without the requirement of permeability barriers. CO2-flushing forces the exsolution of water and the increase of magma viscosity, which proceeds from the bottom of the magma column upward. This rheological configuration unavoidably leads to the progressive thickening of a gas-rich and low density (i.e., gravitationally unstable) layer at the bottom of the feeding system. Our calculations account for observations, gas monitoring and petrological data; moreover, they provide a basis to trace the approach to deeply triggered large or paroxysmal eruptions and estimate their size from monitoring data. Our model is finally applied to Stromboli volcano, an emblematic example of open conduit volcano, but can be applied to any other open conduit volcano globally and offers a framework to anticipate the occurrence of unexpectedly large eruptions.