Skip to main content
Passa alla visualizzazione normale.

ROSARIO NUNZIO MANTEGNA

Shrinkage and spectral filtering of correlation matrices: a comparison via the Kullback-Leibler distance

Abstract

The problem of filtering information from large correlation matrices is of great importance in many applications. We have recently proposed the use of the Kullback-Leibler distance to measure the performance of filtering algorithms in recovering the underlying correlation matrix when the variables are described by a multivariate Gaussian distribution. Here we use the Kullback-Leibler distance to investigate the performance of filtering methods based on Random Matrix Theory and on the shrinkage technique. We also present some results on the application of the Kullback-Leibler distance to multivariate data which are non Gaussian distributed