Salta al contenuto principale
Passa alla visualizzazione normale.

MAURIZIO MARRALE

Agarose and PVA Fricke gel dosimeters exposed to clinical photons beams: Nuclear Magnetic Resonance Relaxometry and Imaging

  • Autori: MARRALE, M; GAGLIARDO, C; GALLO, S; IACOVIELLO, G; LONGO, A; TRANCHINA, L; COLLURA, G; LAZZERI, L; PANZECA, S; BRAI, M ; D’ERRICO F
  • Anno di pubblicazione: 2015
  • Tipologia: Poster pubblicato in volume
  • OA Link: http://hdl.handle.net/10447/147275

Abstract

Fricke Xylenol Gel (FXG) dosimetric system is based on the radiation induced oxidation of ferrous (Fe2+) to ferric (Fe3+) ions. The application of Fricke gels for ionizing radiation dosimetry is continuously increasing worldwide due to their many favorable properties. However, one of their shortcomings is that ferrous and ferric ions diffuse in the gel matrix. To maintain the spatial integrity of the dose distribution, Fricke gels must be undergoing measurement within a few hours of their irradiation, so that ferric ions remain close to their point of production. Thus, the spatial integrity of the dose distribution in the Fricke gel is maintained. The gel matrix also contributes to the oxidation of ferrous ions during irradiation, increasing the chemical yield of ferric ions in aqueous solution and increasing the sensitivity of the dosimeter. The oxidation of ferrous ions also causes a reduction of the longitudinal nuclear magnetic relaxation time T1 which can be measured by means of Nuclear Magnetic Resonance Relaxometry (NMR) and Magnetic Resonance Imaging (MRI). The results presented are related to an experimental investigation conducted on Fricke Gels characterized by gelatinous matrix of Agarose or PVA. We performed NMR relaxometry investigations which allow for direct measurements of the relaxation times in samples exposed to clinical photon beams. The main dosimetric features of the NMR signal were investigated. The gels were irradiated in the clinical dose range between 0 and 20 Gy. In order to assess the photon sensitivitywe analyzed the dependence of NMR relaxation time on radiation dose with varying ferrous ammonium sulfate content inside FXGs. Furthermore, signal stability was followed for several days after irradiation. These measurements were preliminary to MRI analysis which can permit 3D dose mapping. In order to optimized the MRI response a systematic study was performed to optimize acquisition sequences and parameters. In particular, we analyzed for inversion recovery sequences the dependence of MRI signal on the repetition time TR and on the inversion time TI . The dose calibration curves are reported and discussed from the point of view of the dosimeter use in clinical radiotherapy. This work has highlighted that the optimization of additives inside gel matrix is fundamental for optimizing photon sensitivity of these POSTERS 355 detectors. We can conclude that FXG dosimeters with optimal ferrous ammonium sulfate content can be regarded as a valuable dosimetric tool to achieve fast information on spatial dose distribution.