Radiomics analysis of 18F-Choline PET/CT in the prediction of disease outcome in high-risk prostate cancer: an explorative study on machine learning feature classification in 94 patients
- Authors: Alongi P.; Stefano A.; Comelli A.; Laudicella R.; Scalisi S.; Arnone G.; Barone S.; Spada M.; Purpura P.; Bartolotta T.V.; Midiri M.; Lagalla R.; Russo G.
- Publication year: 2021
- Type: Articolo in rivista
- Key words: Choline; Machine learning; Positron emission tomography computed tomography; Prostate cancer; Radiomics; Artificial Intelligence; Choline; Humans; Machine Learning; Male; Neoplasm Recurrence, Local; Prospective Studies; Positron Emission Tomography Computed Tomography; Prostatic Neoplasms
- OA Link: http://hdl.handle.net/10447/556595
Abstract
Objective: The aim of this study was (1) to investigate the application of texture analysis of choline PET/CT images in prostate cancer (PCa) patients and (2) to propose a machine-learning radiomics model able to select PET features predictive of disease progression in PCa patients with a same high-risk class at restaging. Material and methods: Ninety-four high-risk PCa patients who underwent restaging Cho-PET/CT were analyzed. Follow-up data were recorded for a minimum of 13 months after the PET/CT scan. PET images were imported in LIFEx toolbox to extract 51 features from each lesion. A statistical system based on correlation matrix and point-biserial-correlation coefficient has been implemented for features reduction and selection, while Discriminant analysis (DA) was used as a method for features classification in a whole sample and sub-groups for primary tumor or local relapse (T), nodal disease (N), and metastatic disease (M). Results: In the whole group, 2 feature (HISTO_Entropy_log10; HISTO_Energy_Uniformity) results were able to discriminate the occurrence of disease progression at follow-up, obtaining the best performance in DA classification (sensitivity 47.1%, specificity 76.5%, positive predictive value (PPV) 46.7%, and accuracy 67.6%). In the sub-group analysis, the best performance in DA classification for T was obtained by selecting 3 features (SUVmin; SHAPE_Sphericity; GLCM_Correlation) with a sensitivity of 91.6%, specificity 84.1%, PPV 79.1%, and accuracy 87%; for N by selecting 2 features (HISTO = _Energy Uniformity; GLZLM_SZLGE) with a sensitivity of 68.1%, specificity 91.4%, PPV 83%, and accuracy 82.6%; and for M by selecting 2 features (HISTO_Entropy_log10 - HISTO_Entropy_log2) with a sensitivity 64.4%, specificity 74.6%, PPV 40.6%, and accuracy 72.5%. Conclusion: This machine learning model demonstrated to be feasible and useful to select Cho-PET features for T, N, and M with valuable association with high-risk PCa patients’ outcomes. Key Points: • Artificial intelligence applications are feasible and useful to select Cho-PET features. • Our model demonstrated the presence of specific features for T, N, and M with valuable association with high-risk PCa patients’ outcomes. • Further prospective studies are necessary to confirm our results and to develop the application of artificial intelligence in PET imaging of PCa.