Improving operation of a complex headworks system for municipal use and hydropower production by mathematical programming
- Autori: Arena, C; Cannarozzo, M; Mazzola, MR
- Anno di pubblicazione: 2013
- Tipologia: Proceedings
- OA Link: http://hdl.handle.net/10447/78847
Abstract
The paper presents a Mixed Integer Non Linear Programming (MINLP) model of the water resources system supplying Genoa, in northern Italy. The system presently features five reservoirs, three main river intakes, and two well fields. The hydrological regime is typically Mediterranean; water availability is however relatively abundant, so that drought issues are limited, especially now that water demand from the supply sources has decreased due to reduced population, deindustrialization and to improvement in the operation and maintenance of the water distribution network. In this context, it is worthwhile considering the possibility to relax an over-conservative management of resources, justified by the experience of previous drought events, and to explore the viability of exploiting resources from reservoirs for hydropower production. The MINLP model expresses cost minimization over a 40 year time period on a monthly basis, subject to physical constraints. Costs include scarcity costs (the economic value of possible water deficits) and extraction costs from wells, minus hydropower production. The model has been written in GAMS and solved through the SBB (Simple Branch and Bound) solver. Results show that the system is able to meet demand over the 40 year hydrologic scenario with negligible water deficits and that hydropower production may be enhanced compared to present by increasing releases from reservoirs, which ultimately implies accepting keeping reservoirs emptier than presently done.