Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco
- Autori: Orlando, S.; Drake, J.; Miceli, M.
- Anno di pubblicazione: 2017
- Tipologia: Articolo in rivista (Articolo in rivista)
- Parole Chiave: Binaries: symbiotic; Cataclysmic variables; Circumstellar matter; Novae; Shock waves; Stars: individual: (V745 Sco); X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science
- OA Link: http://hdl.handle.net/10447/231759
Abstract
The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blueshifted emission lines.Herewe investigate the origin of these asymmetries through 3D hydrodynamic simulations describing the outburst during the first 20 d of evolution. The model takes into account thermal conduction and radiative cooling, and assumes that a blast wave propagates through an equatorial density enhancement (EDE). From these simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra.We find that both the blast wave and the ejecta distribution are efficiently collimated in polar directions due to the presence of the EDE. The majority of the X-ray emission originates from the interaction of the blast with the EDE and is concentrated on the equatorial plane as a ring-like structure. Our 'best-fitting' model requires a mass of ejecta in the outburst Mej ≈ 3×10-7M ⊙ and an explosion energy Eb ≈ 3×1043 erg, and reproduces the distribution of emission measure versus temperature and the evolution of shock velocity and temperature inferred from the observations. The model predicts asymmetric and blueshifted line profiles similar to those observed and explains their origin as due to substantial X-ray absorption of redshifted emission by ejecta material. The comparison of predicted and observed Ne and O spectral line ratios reveals no signs of strong Ne enhancement and suggests that the progenitor is a CO white dwarf.