Skip to main content
Passa alla visualizzazione normale.

GIORGIO DOMENICO MARIA MICALE

The Role of Operating Conditions in the Precipitation of Magnesium Hydroxide Hexagonal Platelets Using NaOH Solutions

  • Authors: Romano S.; Trespi S.; Achermann R.; Battaglia G.; Raponi A.; Marchisio D.; Mazzotti M.; Micale G.; Cipollina A.
  • Publication year: 2023
  • Type: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/609533

Abstract

Magnesium hydroxide, Mg(OH)2, is an inorganic compound extensively employed in several industrial sectors. Nowadays, it is mostly produced from magnesium-rich minerals. Nevertheless, magnesium-rich solutions, such as natural and industrial brines, could prove to be a great treasure. In this work, synthetic magnesium chloride and sodium hydroxide (NaOH) solutions were used to recover Mg(OH)2 by reactive crystallization. A detailed experimental campaign was conducted aiming at producing grown Mg(OH)2 hexagonal platelets. Experiments were carried out in a stirred tank crystallizer operated in single- and double-feed configurations. In the single-feed configuration, globular and nanoflakes primary particles were obtained, as always reported in the literature when NaOH is used as a precipitant. However, these products are not complying with flame-retardant applications that require large hexagonal Mg(OH)2 platelets. This work suggests an effective precipitation strategy to favor crystal growth while, at the same time, limiting the nucleation mechanism. The double-feed configuration allowed the synthesis of grown Mg(OH)2 hexagonal platelets. The influence of reactant flow rates, reactant concentrations, and reaction temperature was analyzed. Scanning electron microscopy (SEM) pictures were also taken to investigate the morphology of Mg(OH)2 crystals. The proposed precipitation strategy paves the road to satisfy flame-retardant market requirements.