Antioxidant bioactivity of extracts from beach cast leaves of posidonia oceanica (L.) delile
- Autori: Messina C.M.; Arena R.; Manuguerra S.; Pericot Y.; Curcuraci E.; Kerninon F.; Renda G.; Hellio C.; Santulli A.
- Anno di pubblicazione: 2021
- Tipologia: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/528090
Abstract
The marine environment is a generous source of biologically active compounds useful for human health. In 50 years, about 25,000 bioactive marine compounds have been identified, with an increase of 5% per year. Peculiar feature of algae and plants is the production of secondary metabolites, such as polyphenols, synthesized as a form of adaptation to environmental stress. Posidonia oceanica is a Mediterranean endemic and dominant seagrass and represents a biologically, ecologically and geologically important marine ecosystem. Within this study, methanolic and ethanolic extracts were generated from fresh and dried Posidonia oceanica leaves, with the aim to employ and valorize the beach cast leaves. The best yield and antioxidant activity (polyphenols content equal to 19.712 ± 0.496 mg GAE/g and DPPH IC50 of 0.090 µg/µL.) were recorded in 70% ethanol extracts (Gd-E4) obtained from leaves dried for two days at 60◦C and ground four times. HPLC analyses revealed the presence of polyphenols compounds (the most abundant of which was chicoric acid) with antioxidant and beneficial properties. Bioactive properties of the Gd-E4 extracts were evaluated in vitro using fibroblast cells line (HS-68), subjected to UV induced oxidative stress. Pre-treatment of cells with Gd-E4 extracts led to significant protection against oxidative stress and mortality associated with UV exposure, thus highlighting the beneficial properties of antioxidants compounds produced by these marine plants against photo damage, free radicals and associated negative cellular effects. Beach cast leaves selection, processing and extraction procedures, and the in vitro assay results suggested the potentiality of a sustainable approach for the biotechnological exploitation of this resource and could serve a model for other marine resources.