Particulate organic matter composition in a semi-enclosed marine system
- Authors: Mazzola, A; Fabiano, M; Pusceddu, A; Sarà, G
- Publication year: 2001
- Type: Articolo in rivista (Articolo in rivista)
- OA Link: http://hdl.handle.net/10447/193365
Abstract
Spatial and temporal changes in the biochemical composition of particulate organic matter in a semi-enclosed marine system (Stagnone di Marsala, Mediterranean Sea) were studied, on a monthly basis, from January to December 1994, in order to assess nutritional value of suspended particles for benthic suspension feeders. According to previous findings, the study site displayed a strong oligotrophy. Chlorophyll-a accounted for a very low fraction of the total suspended matter pool (0.1%), whereas at least 75% of POC was of detrital/heterotrophic origin. POC: PON ratio values indicate that bacterioplankton biomass accounted for a significant fraction of the total POC pool, displaying values comparable to those of the phytoplankton biomass (phytoplankton to bacterial biomass ratio was about (1). Temporal and spatial changes in the biochemical composition of particulate organic matter were rather limited and related to its sources, the main of which is represented by detrital particles released by the Posidonia oceanica (L.) beds. the comparison between our results and those encountered in other coastal lagoons indicates that the low abundance of suspension-feeding organisms observed in the study area is related to the “quality depression” of particles due to the dilution of high quality compounds (i.e., biopolymeric carbon) in a largely inorganic matrix. This result leads us to conclude that, to reach the same amount of high quality particulate food, a suspension feeder mollusc in the Marsala lagoon would need to filter a sea water volume around 3 times higher than in other Mediterranean coastal lagoons.