Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system
- Authors: Vetrano F.; Moncada A.; Miceli A.
- Publication year: 2020
- Type: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/423065
Abstract
Hydroponics need water of good quality to prepare a balanced nutrient solution that could allow plants to reach their maximum yield potential. The rising difficulties in finding water with good quality have led to the compelling necessity of identifying sustainable ways to use saline water, limiting its negative effect on crop yield and quality. The exogenous supplementation of plant growth regulators, such as gibberellic acid (GA3), can be effective in increasing plant growth and vigor, thus helping plants to better cope with salt stress. The aim of this study was to evaluate the feasibility to increase the salt tolerance of leaf lettuce and rocket grown in a floating system by adding GA3 (10−6 M) to mineral nutrient solutions (MNS) with increasing salinity (0, 10, and 20 mM NaCl). Leaf lettuce and rocket plants suffered a significant reduction of growth and yield, determined by the reduction of biomass, leaf number, and leaf area, even with moderate salt stress (10 mM NaCl). The supplementation of exogenous GA3 through the MNS allowed plants to substantially counterbalance salt stress by enhancing various morphological and physiological traits, such as biomass accumulation, leaf expansion, stomatal conductance and water and nitrogen use efficiency. The effects of salt stress and GA3 treatment varied according to the species, thus indicating that this interaction may improve salt tolerance by activating different adaptation systems.