Landauer's Principle in Multipartite Open Quantum System Dynamics
- Autori: Lorenzo, S.; Mccloskey, R.; Ciccarello, F.; Paternostro, M.; Palma, G.
- Anno di pubblicazione: 2015
- Tipologia: Articolo in rivista (Articolo in rivista)
- OA Link: http://hdl.handle.net/10447/147747
Abstract
We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for heat and entropy power can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evolution. Such features are illustrated in two exemplary cases.