Salta al contenuto principale
Passa alla visualizzazione normale.

GIOSUE' LO BOSCO

A one class KNN for signal identification: a biological case study

  • Autori: DI GESU', V; Lo Bosco, G; Pinello, L
  • Anno di pubblicazione: 2009
  • Tipologia: Articolo in rivista (Articolo in rivista)
  • Parole Chiave: one class classifiers; multi layer methods; nucleosome positioning.
  • OA Link: http://hdl.handle.net/10447/40105

Abstract

The paper describes an application of a one class KNN to identify different signal patterns embedded in a noise structured background. The problem becomes harder whenever only one pattern is well-represented in the signal; in such cases, one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a multi layer model (MLM) that provides preliminary signal segmentation in an interval feature space. The one class KNN has been tested on synthetic and real (Saccharomyces cerevisiae) microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.