Skip to main content
Passa alla visualizzazione normale.

SERENA INDELICATO

Effect of a co-substrate supply in a MBR treating shipboard slop: Analysis of hydrocarbon removal, biomass activity and membrane fouling tendency

  • Authors: Piazzese, D., Corsino, S.F., Torregrossa, M., Bongiorno, D., Indelicato, S., Viviani, G.
  • Publication year: 2018
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/336190

Abstract

The paper reports the main results of an experiment carried out on a membrane bioreactor (MBR) plant designed for the treatment of shipboard slops. With a view of a co-treatment process of the slop with other wastewaters, sodium acetate, as external co-substrate, was supplied (high dosage – Period 1, low dosage – Period 2) to evaluate its effects on hydrocarbons removal. The MBR pilot plant enabled approximately 99% of total petroleum hydrocarbon (TPH) removal during the entire experiment, confirming the robustness of the MBR technology for the treatment of slops. The chromatography/mass spectrometry analysis showed that the removal efficiency for each alkane was close to the value observed for total mixture removal (>99%) and the hydrocarbons removal was mostly due to the microorganism-mediated biodegradation. The biological contribution to TPH removal increased from approximately 85% to 98% when the co-substrate was decreased. Biomass kinetics revealed that a lower co-substrate dosage enhanced the growth of bacterial groups able to use hydrocarbons as primary substrate. A clear predominance of Microthrix Parvicella under low co-substrate dosage was observed. However, the lower co-substrate addition caused a significant worsening in the physical properties of the activated sludge, which resulted enriched in soluble exopolymers (>70%), more hydrophobic (>90%) and with small and dispersed flocs (<30 μm). Consequently, the membrane permeability reduced because of the irreversible fouling increase.