Reagent free electrochemical-based detection of silver ions at interdigitated microelectrodes using in-situ pH control
- Authors: Wasiewska L.A.; Seymour I.; Patella B.; Inguanta R.; Burgess C.M.; Duffy G.; O'Riordan A.
- Publication year: 2021
- Type: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/481785
Abstract
Herein we report on the development of an electrochemical sensor for silver ions detection in tap water using anodic sweep voltammetry with in-situ pH control; enabled by closely spaced interdigitated electrode arrays. The in-situ pH control approach allowed the pH of a test solution to be tailored to pH 3 (experimentally determined as the optimal pH) by applying 1.65 V to a protonator electrode with the subsequent production of protons, arising from water electrolysis, dropping the local pH value. Using this approach, an initial proof-of-concept study for silver detection in sodium acetate was undertaken where 1.25 V was applied during deposition (to compensate for oxygen production) and 1.65 V during stripping. Using these conditions, calibration between 0.2 and 10 μM was established with the silver stripping peak ∼0.3 V. The calculated limit of detection was 13 nM. For the final application in tap water, 1.65 V was applied to a protonator electrode for both deposition and stripping of silver. The chloride ions, present in tap water (as a consequence of adding chlorine during the disinfection process) facilitated silver detection and caused the striping peak to shift catholically to ∼0.2 V. The combination of the complexation of silver ions with chloride and in-situ pH control resulted in a linear calibration range between 0.25 and 2 μM in tap water and a calculated limit of detection of 106 nM without the need to add acid or supporting electrolytes.