Equivalent-Single-Layer discontinuous Galerkin methods for static analysis of multilayered shells
- Authors: Guarino G.; Milazzo A.; Gulizzi V.
- Publication year: 2021
- Type: Articolo in rivista
- OA Link: http://hdl.handle.net/10447/515277
Abstract
An original formulation for the elastic analysis of multilayered shells is presented in this work. The key features of the formulation are: the representation of the shell mean surface via a generic system of curvilinear coordinates; the unified treatment of general shell theories via an Equivalent-Single-Layer approach based on the through-the-thickness expansion of the covariant components of the displacement field; and an Interior Penalty discontinuous Galerkin scheme for the solution of the set of governing equations. The combined use of these features enables a high-order solution of the multilayered shell problem. Several numerical tests are presented for isotropic, orthotropic and multilayered shells with different geometrical configurations and boundary conditions, including the case of a non-smooth geometry. Comparisons with analytical solutions and finite-element simulations show the high-order accuracy as well as the capability and robustness of the proposed formulation, which can be a valuable tool for the analysis of generally-curved multilayered shells.