Skip to main content
Passa alla visualizzazione normale.

MASSIMO GANGITANO

Visual illusions and the control of children arm movements

Abstract

The aim of the present study was to determine whether children like adults (Gentilucci M, Chieffi S, Daprati E, Saetti MC, Toni I. Visual illusion and action. Neuropsychologia 1996;34:369-76; Gentilucci M, Daprati E, Gangitano M, Toni I. Eye position tunes the contribution of allocentric and egocentric information to target localisation in human goal directed arm movements. Neurosci Lett 1997;222:123-6) are influenced by visual illusions when they transform visual information in motor command. Children and adults pointed to a shaft extremity of the Müller-Lyer configurations, as well as to an extremity of a control configuration. Movements were executed in two experimental conditions. In the vision condition subjects saw both the stimulus and their hand before and during movement. In the no vision (memory) condition subjects saw the stimulus and their hand before, but not during movement. Movement started 5 s after vision was precluded. The Müller-Lyer illusion affected pointing kinematics of both children and adults. As found previously (Gentilucci M, Chieffi S, Daprati E, Saetti MC, Toni I. Visual illusion and action. Neuropsychologia 1996;34:369-76; Gentilucci M, Daprati E, Gangitano M, Toni I. Eye position tunes the contribution of allocentric and egocentric information to target localisation in human goal directed arm movements. Neurosci Lett 1997;222:123-6), subjects undershot and overshot the shaft extremity of the closed and of the open configuration, respectively. The illusion effect was greater in the no vision than in the vision condition. These results show that in children like in adults the system underlying visual perception in an object-centered frame of reference and that involved in motor control functionally interact with each other. Although the processes of target localisation were the same, the transformation of target position information in a sequence of motor patterns was different in children from that in adults. Even if both children and adults lengthened duration of the deceleration phase in the vision condition, only adults shortened duration of the acceleration phase in order to maintain constant movement time (Viviani P, Schneider R. A developmental study of the relationship between geometry and kinematics in drawing movements. J Exp Psychol 1991;17:198-218). This result suggests that children are yet unable to co-ordinate temporally acceleration with deceleration phase. © 2001 Elsevier Science Ltd.