Skip to main content
Passa alla visualizzazione normale.

GIUSEPPE MIRKO NAZARENO GALLO

Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay

  • Authors: Cusimano M.G.; Ardizzone F.; Nasillo G.; Gallo M.; Sfriso A.;Chillura Martino D.; Schillaci D.; Baldi F.; Gallo G.
  • Publication year: 2020
  • Type: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/426154

Abstract

Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag+, Klebsiella oxytoca DSM 29614 produces biogenic Ag-NPs embedded in its peculiar exopolysaccharide (EPS). K. oxytoca DSM 29614 was cultivated in a defined growth medium–containing citrate (as sole carbon source) and supplemented with Ag+ and either low or high Fe(III) concentration. As inferred from elemental analysis, transmission and scanning electron microscopy, Fourier transform infrared spectrometry and dynamic light scattering, Ag-EPS NPs were produced in both conditions and contained also Fe. The production yield of high-Fe/Ag-EPS NPs was 12 times higher than the production yield of low-Fe/Ag-EPS NPs, confirming the stimulatory effect of iron. However, relative Ag content and Ag+ ion release were higher in low-Fe/Ag-EPS NPs than in high-Fe/Ag-EPS NPs, as revealed by emission-excitation spectra by luminescent spectrometry using a novel ad hoc established phycoerythrin fluorescence–based assay. Interestingly, high and low-Fe/Ag-EPS NPs showed different and growth medium–dependent minimal inhibitory concentrations against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 15442. In addition, low-Fe/Ag-EPS NPs exert inhibition of staphylococcal and pseudomonal biofilm formation, while high-Fe/Ag-EPS NPs inhibits staphylococcal biofilm formation only. Altogether, these results, highlighting the different capability of Ag+ release, support the idea that Fe/Ag-EPS NPs produced by K. oxytoca DSM 29614 can be considered as promising candidates in the development of specific antibacterial and anti-biofilm agents. Key points • Klebsiella oxytoca DSM 29614 produces bimetal nanoparticles containing Fe and Ag. • Fe concentration in growth medium affects nanoparticle yield and composition. • Phycoerythrin fluorescence–based assay was developed to determine Ag+release. • Antimicrobial efficacy of bimetal nanoparticle parallels Ag+ions release.