Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties
- Authors: Vaccaro, L.; Cannas, M.; Cangialosi, C.; Spallino, L.; Gelardi, F.
- Publication year: 2015
- Type: Articolo in rivista (Articolo in rivista)
- Key words: Sintering, Silica nanoparticles, Time-resolved Luminescence, Defect state
- OA Link: http://hdl.handle.net/10447/166027
Abstract
We report that the sintering at 1000 degrees C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects' states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. (C) 2015 Elsevier B.V. All rights reserved.