Salta al contenuto principale
Passa alla visualizzazione normale.

SIMONA FONTANA

Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism

  • Autori: Raimondo, S.; Saieva, L.; Corrado, C.; Fontana, S.; Flugy, A.; Rizzo, A.; De Leo, G.; Alessandro, R.
  • Anno di pubblicazione: 2015
  • Tipologia: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/108713

Abstract

BackgroundChronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder in which leukemic cells display a reciprocal t(9:22) chromosomal translocation that results in the formation of the chimeric BCR-ABL oncoprotein, with a constitutive tyrosine kinase activity. Consequently, BCR-ABL causes increased proliferation, inhibition of apoptosis, and altered adhesion of leukemic blasts to the bone marrow (BM) microenvironment. It has been well documented that cancer cells can generate their own signals in order to sustain their growth and survival, and recent studies have revealed the role of cancer-derived exosomes in activating signal transduction pathways involved in cancer cell proliferation. Exosomes are small vesicles of 40¿100 nm in diameter that are initially formed within the endosomal compartment, and are secreted when a multivesicular body (MVB) fuses with the plasma membrane. These vesicles are released by many cell types including cancer cells, and are considered messengers in intercellular communication. We have previously shown that CML cells released exosomes able to affect the tumor microenvironment.ResultsCML cells, exposed up to one week, to exosomes showed a dose-dependent increased proliferation compared with controls. Moreover, exosome treatment promotes the formation of LAMA84 colonies in methylcellulose. In a CML xenograft model, treatment of mice with exosomes caused a greater increase in tumor size compared with controls (PBS-treated mice). Real time PCR and Western Blot analysis showed, in both in vitro and in vivo samples, an increase in mRNA and protein levels of anti-apoptotic molecules, such as BCL-w, BCL-xl, and survivin, and a reduction of the pro-apoptotic molecules BAD, BAX and PUMA. We also found that TGF- ß1 was enriched in CML-exosomes. Our investigations showed that exosome-stimulated proliferation of leukemia cells, as well as the exosome-mediated activation of an anti-apoptotic phenotype, can be inhibited by blocking TGF-ß1 signaling.ConclusionsCML-derived exosomes promote, through an autocrine mechanism, the proliferation and survival of tumor cells, both in vitro and in vivo, by activating anti-apoptotic pathways. We propose that this mechanism is activated by a ligand-receptor interaction between TGF-ß1, found in CML-derived exosomes, and the TGF- ß1 receptor in CML cells.