Skip to main content
Passa alla visualizzazione normale.

PIETRO ALESSANDRO DI MAIO

Development of a thermal-hydraulic model of the EU-DEMO Water Cooled Lithium Lead Breeding Blanket Primary Heat Transport System

  • Authors: Vallone E.; Bongiovì G.; Di Maio P.A.; Moscato I.; Quartararo A.; Vacca S.
  • Publication year: 2023
  • Type: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/606753

Abstract

The EUROfusion consortium is developing the project of a DEMOnstration Fusion Reactor (EU-DEMO) which would follow ITER in the pathway towards the quest for the exploitation of fusion energy. EU-DEMO has been conceived to deliver net electric power to the grid. Therefore, proper critical evaluations of the tokamak cooling and power conversion systems are needed because they play a pivotal role in the design and licencing of the overall plant. The EU-DEMO reactor will be based on the tokamak concept and, as such, it is supposed to undergo a pulsed duty cycle under normal conditions, which might challenge the qualified lifetime of the main equipment inducing undue thermal and mechanical cycling. Moreover, the EU-DEMO plasma control strategy postulates the possible occurrence of planned and off-normal plasma overpower transients that might jeopardise the structural integrity of the plasma facing components. It is, therefore, of paramount importance to have appropriate tools to reproduce the thermal-hydraulic behaviour of tokamak cooling systems during major operational and accidental scenarios in a realistic and reliable way. In this context, University of Palermo in cooperation with EUROfusion has developed a finite volume model of the Primary Heat Transport System (PHTS) feeding the EU-DEMO Water Cooled Lithium Lead Breeding Blanket (WCLL BB). The activity has been led following a theoretical–computational approach based on the adoption of the TRACE thermal-hydraulic system code. Particular attention has been paid to capturing all the main geometrical, hydraulic and heat transfer features characterising both in-vessel and ex-vessel components. Preliminary analyses have also been carried out to check the code's predictive potential in fusion relevant applications. Models, assumptions, and outcomes of the analyses are herewith reported and critically discussed.