Salta al contenuto principale
Passa alla visualizzazione normale.

MATTEO DALLA RIVA

Series expansion for the effective conductivity of a periodic dilute composite with thermal resistance at the two-phase interface

Abstract

We study the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material, each of them of size proportional to a positive parameter ?. We assume that the normal component of the heat flux is continuous at the two-phase interface, while we impose that the temperature field displays a jump proportional to the normal heat flux. For ? small, we prove that the effective conductivity can be represented as a convergent power series in ? and we determine the coefficients in terms of the solutions of explicit systems of integral equations.