Salta al contenuto principale
Passa alla visualizzazione normale.

ANNA DE BLASIO

Sodium butyrate induces apoptosis in human hepatoma cells by a mitochondria/caspase pathway, associated with degradation of beta-catenin, pRb and Bcl-XL.

  • Autori: EMANUELE S; D'ANNEO A; BELLAVIA G; VASSALLO B; LAURICELLA M; DE BLASIO A; VENTO R; TESORIERE G
  • Anno di pubblicazione: 2004
  • Tipologia: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/18154

Abstract

Butyrate can promote programmed cell death in a number of tumour cells in vitro. This paper provides evidence that butyrate induces apoptosis in human hepatoma HuH-6 and HepG2 cells but is ineffective in Chang liver cells, an immortalised non-tumour cell line. In both HuH-6 and HepG2 cells, apoptosis appeared after a lag period of approximately 16 h and increased rapidly during the second day of treatment. In particular, the effect was stronger in HuH-6 cells, which were, therefore, chosen for ascertaining the mechanism of butyrate action. In HuH-6 cells, beta-catenin seemed to exert an important protective role against apoptosis, since pretreatment with beta-catenin antisense ODN reduced the content of beta-catenin and anticipated the onset of apoptosis at 8 h of exposure to butyrate. Moreover, in HuH-6 cells, butyrate induced loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, activation of caspase 9 and caspase 3, and degradation of poly(ADP-ribose) polymerase. In addition, during the second day of treatment, beta-catenin, pRb, and cyclins D and E were diminished and the phosphorylated form of pRb disappeared. Also, the content of the anti-apoptotic factor Bcl-XL fell markedly during this period, while that of the pro-apoptotic factor Bcl-Xs increased. These effects were accompanied by an increase in both Bcl-XL and Bcl-Xs mRNA transcripts, as ascertained by reverse transcriptase-polymerase chain reaction. Our results suggest that caspases have a crucial role in butyrate-induced apoptosis. This conclusion is supported by the observation that the inhibitors of caspases, benzyloxy carbonyl-Val-Ala-Asp-fluoromethylketone and benzyloxy carbonyl-Asp-Glu-Val-Asp-fluoromethylketone, prevented apoptosis and the decrease in Bcl-XL, pRb, cyclins and beta-catenin. These effects were most probably responsible for the increased sensitivity of the cells to butyrate-induced apoptosis, which was observed on the second day of treatment.