Salta al contenuto principale
Passa alla visualizzazione normale.

PATRIZIA CANCEMI

Expression of Alpha-Enolase (ENO1), Myc Promoter-Binding Protein-1 (MBP-1) and Matrix Metalloproteinases (MMP-2 and MMP-9) Reflect the Nature and Aggressiveness of Breast Tumors

  • Autori: Cancemi, Patrizia; Buttacavoli, Miriam; Roz, Elena; Feo, Salvatore
  • Anno di pubblicazione: 2019
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/379011

Abstract

Breast cancer is a complex and heterogeneous disease: Several molecular alterations cause cell proliferation and the acquisition of an invasive phenotype. Extracellular matrix (ECM) is considered essential for sustaining tumor growth and matrix metalloproteinases (MMPs) have been identified as drivers of many aspects of the tumor phenotype. Mounting evidence indicates that both α-enolase (ENO1) and Myc promoter-binding protein-1 (MBP-1) also played pivotal roles in tumorigenesis, although as antagonists. ENO1 is involved in cell growth, hypoxia tolerance and autoimmune activities besides its major role in the glycolysis pathway. On the contrary, MBP-1, an alternative product of ENO1, suppresses cell proliferation and the invasive ability of cancer cells. Since an important task in personalized medicine is to discriminate a different subtype of patients with different clinical outcomes including chances of recurrence and metastasis, we investigated the functional relationship between ENO1/MBP-1 expression and MMP-2 and MMP-9 activity levels in both tissues and sera of breast cancer patients. We focused on the clinical relevance of ENO1 and MMPs (MMP-2 and MMP-9) overexpression in breast cancer tissues: The association between the higher ENO1, MMP-2 and MMP-9 expression with a worse prognosis suggest that the elevated ENO1 and MMPs expression are promising biomarkers for breast cancer. A relationship seems to exist between MBP-1 expression and the decrease in the activity levels of MMP-9 in cancer tissues and MMP-2 in sera. Moreover, the sera of breast cancer patients grouped for MBP-1 expression differentially induced, in vitro, cell proliferation and migration. Our findings support the hypothesis of patient's stratification based on ENO1, MBP-1 and MMPs expression. Elucidating the molecular pathways through which MBP-1 influences MMPs expression and breast cancer regression can lead to the discovery of new management strategies.