Salta al contenuto principale
Passa alla visualizzazione normale.

ALFONSO CARMELO CINO

Arbitrary Phase Access for Stable Fiber Interferometers

  • Autori: Roztocki, Piotr; MacLellan, Benjamin; Islam, Mehedi; Reimer, Christian; Fischer, Bennet; Sciara, Stefania; Helsten, Robin; Jestin, Yoann; Cino, Alfonso; Chu, Sai T.; Little, Brent; Moss, David J.; Kues, Michael; Morandotti, Roberto
  • Anno di pubblicazione: 2021
  • Tipologia: Articolo in rivista
  • OA Link: http://hdl.handle.net/10447/509583

Abstract

Well‐controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate device isolation) to <1.3 × 10−3 π rad error signal Allan deviation across 1 ms to 1.2 h integration times for all tested phases, ranging from 0 to 2π. More importantly, the phase‐independence of this stability is shown across the full 2π range, granting access to arbitrary phase settings, central for, e.g., performing quantum projection measurements and coherent pulse recombination. Furthermore, the scheme is characterized with attenuated optical reference signals and single‐photon detectors, and extended functionality is demonstrated through the use of pulsed reference signals (allowing time‐multiplexing of both main and reference signals). Finally, the scheme is used to demonstrate radiofrequency‐controlled interference of high‐dimensional time‐bin entangled states.