Skip to main content
Passa alla visualizzazione normale.

SILVIO BUSCEMI

Analysis of miRNA expression profile induced by short term starvation in breast cancer cells treated with doxorubicin

  • Authors: Rizzo, S.; Cangemi, A.; Galvano, A.; Fanale, D.; Buscemi, S.; Ciaccio, M.; Russo, A.; Castorina, S.; Bazan, V.
  • Publication year: 2017
  • Type: Articolo in rivista (Articolo in rivista)
  • OA Link: http://hdl.handle.net/10447/249525

Abstract

Recent studies showed that dietary approaches restricting food intake can be helpful to hinder tumor progression. To date, the molecular mechanisms are unclear and a key role seems to be exerted by nutrient-related signaling pathways. Since several evidences showed that non-coding small RNAs, including microRNAs, are correlated to cancer progression and antiblastic treatment response, our work aims to study their involvement in a triple negative breast cancer (TNBC) cell line treated with doxorubicin under Short Term Starvation (STS) condition. Human TNBC cell line MDA-MB-231 and healthy breast cell line MCF10A were treated with 1 μM doxorubicin for 24 h under STS condition for 48 h and miRNA expression profiles were analyzed using Taqman® Low Density Array A human microRNA microfluidic cards. In addition, the expression of specific mRNAs and miRNAs differentially expressed under STS was analyzed using Real-time PCR analyses. MiRNA expression profile analysis in MDA-MB-231 and MCF10A cells treated with doxorubicin under STS for 48 h could explain the molecular mechanisms underlying anticancer effects associated to STS. Among deregulated miRNAs, a subset, including miR-15b, miR-23a, miR-26a, miR-29a, miR-106b, miR-128, miR-149, miR-181a, miR- 192, miR-193b, miR-195, miR-324-3p and miR-494, has been shown to be involved in pathways related to drug sensitivity/resistance. The obtained data from our study suggest a potential involvement of some miRNAs in molecular pathways mediating the anticancer effects of STS in doxorubicin-treated breast cancer cells. Preliminary results seem to be encouraging and, in future, could allow the discovery of new potential targets useful for the development of new therapeutic approaches.