The X-ray Integral Field Unit (X-IFU) for Athena
- Authors: Ravera, L.; Barret, D.; den Herder, J.; Piro, L.; Clédassou, R.; Pointecouteau, E.; Peille, P.; Pajot, F.; Arnaud, M.; Pigot, C.; Duband, L.; Cara, C.; den Hartog, R.; Gottardi, L.; Akamatsu, H.; van der Kuur, J.; van Weers, H.; de Plaa, J.; Macculi, C.; Lotti, S.; Torrioli, G.; Gatti, F.; Valenziano, L.; Barbera, M.; Barcons, X.; Ceballos, M.; Fà brega, L.; Mas Hesse, J.; Page, M.; Guttridge, P.; Willingale, R.; Paltani, S.; Genolet, L.; Bozzo, E.; Rauw, G.; Renotte, E.; Wilms, J.; Schmid, C.
- Publication year: 2014
- Type: Proceedings
- OA Link: http://hdl.handle.net/10447/100542
Abstract
Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), offering 2:5 eV spectral resolution, with ~5" pixels, over a field of view of 50 in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.