Skip to main content
Passa alla visualizzazione normale.

LUIGI BOTTA

Analysis on Isotropic and Anisotropic Samples of Polypropylene/Polyethyleneterephthalate Blend/Graphene Nanoplatelets Nanocomposites: Effects of a Rubbery Compatibilizer

Abstract

Over the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. In this regard, this study focuses on the influence of a compatibilizer rubber on a nanocomposite incorporating graphene nanoparticles (GNPs), with a polymer matrix based on a blend of polypropylene (PP) and polyethylene terephthalate (PET). This effect has been investigated on both isotropic samples and on anisotropic/spun fiber samples. The influence of the compatibilizer rubber on morphological, rheological and mechanical properties was analysed and discussed. Mechanical and morphological properties were evaluated on both isotropic samples obtained by compression moulding and melt-spun fibers. The addition of the rubbery compatibilizer increased the viscosity, improving interfacial adhesion, and the same effect was observed for the melt strength and breaking stretching ratios. Mechanical properties, including the elastic modulus, tensile strength and elongation at break, improved in both types of samples but more significantly in the fibers. These improvements were attributed to the orientation of the matrix, the formation of PET microfibrils, and the reduction in the size of graphene nanoparticles due to the action of the elongational flow. This reduction, facilitated by the elongation flow and the action of the compatibilizer, improved matrix-nanofiller adhesion due to the increased contact area between the two polymeric phases and between the filler and matrix. Finally, a transition from brittle to ductile behaviour was observed, particularly in the system with the compatibilizer, attributed to defect reduction and improved stress transmission.